ADYANCED PHARMACEUTICAL BIOSTATISTICS

Dr. Mohammed S. Al-Lami
PhD Pharmaceutics

Lect 3

Example: Effect of exercise on heart rate?

- Practice: Unpaired T test

Subject \#	Female Heights (cm)	Male Height $\mathrm{s}(\mathrm{cm})$	$\mathrm{D}=$ Difference
1	171.1	180.4	-15
2	161.0	168.4	-7
3	155.3	170.9	-11
4	167.9	174.1	-13
5	163.8	170.4	-15
MEAN	163.82	172.84	-9.02
SD	6.128	4.695	3.867

$$
\begin{aligned}
& t=\frac{\left|\overline{x_{!}}-\bar{x}^{\prime \prime}\right|}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}} \\
& =\frac{-9.02}{\sqrt{\left(6.13^{2} / 5\right)+\left(4.69^{2} / 5\right)}} \\
& t=-2.61 \\
& t \text { crit }=2.306(\mathrm{Df}=8)
\end{aligned}
$$

t Table cum. prob one-tail two-tails	$\begin{array}{r} t_{.50} \\ 0.50 \\ 1.00 \end{array}$	$\begin{array}{r} t_{.75} \\ 0.25 \\ 0.50 \end{array}$	$\begin{array}{r} t_{.80} \\ 0.20 \\ 0.40 \end{array}$	$\begin{array}{r} t_{, .5} \\ 0.15 \\ 0.30 \end{array}$	$\begin{array}{r} t_{90} \\ 0.10 \\ 0.20 \end{array}$	$\begin{aligned} & { }^{t_{\text {s5 }}} \\ & 0.05 \\ & 0.10 \end{aligned}$	$\begin{array}{r} t_{975} \\ 0.025 \\ 0.05 \end{array}$	$\begin{array}{r} r_{39} \\ 0.01 \\ 0.02 \end{array}$	$\begin{array}{r} t_{\text {I.95s }} \\ 0.005 \\ 0.01 \end{array}$	$\begin{array}{r} t_{, 999} \\ 0.001 \\ 0.002 \end{array}$	$\begin{gathered} I^{\text {I.9955 }} 0.0005 \mid \\ 0.001 \\ \hline \end{gathered}$
${ }_{1}^{\text {df }}$	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	${ }^{3.646}$	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	${ }_{1}^{1.323}$	1.721	2.080	2.518	2.831	${ }^{3.527}$	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0\%	50\%	60\%	70\%	80\%	90\%	95\%	98\%	99\%	99.8\%	99.9\%

Example: Effect of exercise on heart rate?

- Practice: paired T test

Subject \#	Heart Rate (Resting) Beats/min	Heart Rate (After Exercise) Beats/min	D= Difference
1	70	85	-15.0
2	74	81	-7.0
3	68	79	-11.0
4	55	68	-13.0
5	80	95	-15.0
MEAN	69.4	81.6	-12.2
SE	4.14	4.38	1.50

$$
\begin{aligned}
& t=\frac{\bar{D}}{S E_{D}} \\
& t=\frac{-12.2}{1.5} \\
& t=--8.15 \\
& t \text { crit }=2.776(\mathrm{Df}=4)
\end{aligned}
$$

Example: Effect of exercise on heart rate?

- Practice: one sample T test

Subject \#	Human IQ	Averag e normal	D= Difference
1	85		
2	120		
3	90	100	
4	105		
5	110		35.7
MEAN	135		
SE	6.37		

$$
\begin{aligned}
& t=\frac{\bar{X}-M}{S E_{1}} \\
& t=\frac{35.7}{6.37} \\
& t=5.61 \\
& t \text { crit }=1.833(\mathrm{Df}=9)
\end{aligned}
$$

ANOVA

Analysis of Variance

Family of hypothesis tests for comparing multiple (3+) sample groups.

ANOVA tests compare the means of one or more dependent variables, measured from groups of subjects categorised according to one or more independent variables (factors), representing different treatments or properties of the within each group.

ANOVA Terminology

Dependent Variable (or response)

The measured experimental variable of interest which are affected by the factors.
e.g. weight, blood pressure, heart rate.

Factor (or independent variable)

Variable (usually nominal) representing the factors that affect the dependent variable
e.g. gender, treatment

Levels (of the factor)

Individual values of the factor variable representing the treatment or property used to categorise the subjects into groups.
e.g. The gender factor would have 2 levels: Male \& Female.

Common Types of Analysis of Variance
 One way ANOVA

Single factor, multiple levels.
Compares differences between means of 3 or more independent groups of subjects
One way (repeated measures) ANOVA
Single factor, multiple levels
Compares differences between means of 3 or more groups of measurements repeatedly made on the same subjects

Two way ANOVA

Two factors, multiple levels.
Determines whether each of the two factors have an effect on the dependent variable and whether there is interaction between the factors. May be independent subjects, repeated measures or mixed.

One way ANOVA

Four gps of patients were subjected to 4 different physical treatments therapy abd at end the following scores were obtained. Analysis the treatment effectiveness

	TR A	TR B	TR C	TR D	
	64	76	58	95	
	88	70	74	90	
	72	90	66	80	
	80	80	60	87	
	79	75	82	88	
	71	82	75	85	
Sum	454	473	415	525	1867
Mean	75.7	78.8	69.2	87.5	

1- Ground total $=1867$
2- Mean of All $\overline{\bar{X}}=1867 / 24=77.9$
3- Corr. Factor $=\frac{\left(\sum\left(\sum x\right)\right)^{2}}{24}=145237.04$
4 -Total SS $=\left(\sum\left(X^{2}\right)\right)-\mathrm{CF}=2201.96$
5-between $\operatorname{Tr~ss}=\frac{\sum\left(\left(\sum X\right)^{2}\right)}{6}-\mathrm{CF}=\frac{254^{2}+254^{2}+254^{2}+254^{2}}{6}-\mathrm{CF}$

$$
=1045.46
$$

$6-$ within $\operatorname{tr} s s=$ total $s s-$ bet $\operatorname{Tr} s s=2201.96-1045.46$

$$
=1156.5
$$

SOURCE OF VARIANCE	D.F	SS	Ms (Mean Squre) =ss/D.F	F $=\mathrm{ms} / \mathrm{ms}$	Table 0.05	Table 0.01
Bet gps	3	1045.46	348.5	6.03	3.1	4.94
Withn gps	20	1156.5	57.83			
total	23					

	DF1	$\alpha=0.05$																	
DF2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	Inf
1	161.45	199.5	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.95	248.01	249.05	250.1	251.14	252.2	253.25	254.31
2	18.513	19	19.164	19.247	19.296	19.33	19.353	19.371	19.385	19.396	19.413	19.429	19.446	19.454	19.462	19.471	19.479	19.487	19.496
3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855	8.7446	8.7029	8.6602	8.6385	8.6166	8.5944	8.572	8.5494	8.5264
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.041	5.9988	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459	5.717	5.6877	5.6581	5.6281
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957	4.4638	4.4314	4.3985	4.365
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.099	4.06	3.9999	3.9381	3.8742	3.8415	3.8082	3.7743	3.7398	3.7047	3.6689
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.866	3.787	3.7257	3.6767	3.6365	3.5747	3.5107	3.4445	3.4105	3.3758	3.3404	3.3043	3.2674	3.2298
8	5.3177	4.459	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472	3.2839	3.2184	3.1503	3.1152	3.0794	3.0428	3.0053	2.9669	2.9276
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373	3.0729	3.0061	2.9365	2.9005	2.8637	2.8259	2.7872	2.7475	2.7067
10	4.9646	4.1028	3.7083	3.478	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782	2.913	2.845	2.774	2.7372	2.6996	2.6609	2.6211	2.5801	2.5379
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.948	2.8962	2.8536	2.7876	2.7186	2.6464	2.609	2.5705	2.5309	2.4901	2.448	2.4045
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.341	2.2962
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144	2.671	2.6037	2.5331	2.4589	2.4202	2.3803	2.3392	2.2966	2.2524	2.2064
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	2.6022	2.5342	2.463	2.3879	2.3487	2.3082	2.2664	2.2229	2.1778	2.1307
15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468	2.2043	2.1601	2.1141	2.0658
16	4.494	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377	2.4935	2.4247	2.3522	2.2756	2.2354	2.1938	2.1507	2.1058	2.0589	2.0096
17	4.4513	3.5915	3.1968	2.9647	2.81	2.6987	2.6143	2.548	2.4943	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.104	2.0584	2.0107	1.9604
18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071	2.0629	2.0166	1.9681	1.9168
19	4.3807	3.5219	3.1274	2,8951	2.7401	2.6283	2.5435	2.4768	2.4227	2.3779	2.308	2.2341	2.1555	2.1141	2.0712	2.0264	1.9795	1.9302	1.878
20	4.3512	3.4928	3.0984	2.8661	2.7109	2.599	2.514	2.4471	2.3928	2.3479	2.2776	2.2033	2.1242	2.0825	2.0391	1.9938	1.9464	1.8963	1.8432
21	4.3248	3.4668	3.0725	, 8401	2.6848	2.5727	2.4876	2.4205	2.366	2.321	2.2504	2.1757	2.096	2.054	2.0102	1.9645	1.9165	1.8657	1.8117
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.938	1.8894	1.838	1.7831
23	4.2793	3.4221	3.028	2.7955	2.64	2.5277	2.4422	2.3748	2.3201	2.2747	2.2036	2.1282	2.0476	2.005	1.9605	1.9139	1.8648	1.8128	1.757
24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2.2547	2.1834	2.1077	2.0267	1.9838	1.939	1.892	1.8424	1.7896	1.733
25	4.2417	3.3852	2.9912	2.7587	2.603	2.4904	2.4047	2.3371	2.2821	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.8718	1.8217	1.7684	1.711
26	4.2252	3.369	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655	2.2197	2.1479	2.0716	1.9898	1.9464	1.901	1.8533	1.8027	1.7488	1.6906
27	4.21	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501	2.2043	2.1323	2.0558	1.9736	1.9299	1.8842	1.8361	1.7851	1.7306	1.6717
28	4.196	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.236	2.19	2.1179	2.0411	1.9586	1.9147	1.8687	1.8203	1.7689	1.7138	1.6541
29	4.183	3.3277	2.934	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229	2.1768	2.1045	2.0275	1.9446	1.9005	1.8543	1.8055	1.7537	1.6981	1.6376
30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107	2.1646	2.0921	2.0148	1.9317	1.8874	1.8409	1.7918	1.7396	1.6835	1.6223
40	4.0847	3.2317	2.8387	2.606	2.4495	2.3359	2.249	2.1802	2.124	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.6928	1.6373	1.5766	1.5089
60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.097	2.0401	1.9926	1.9174	1.8364	1.748	1.7001	1.6491	1.5943	1.5343	1.4673	1.3893
120	3.9201	3.0718	2.6802	2.4472	2.2899	2.175	2.0868	2.0164	1.9588	1.9105	1.8337	1.7505	1.6587	1.6084	1.5543	1.4952	1.429	1.3519	1.2539
Inf	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799	1.8307	1.7522	1.6664	1.5705	1.5173	1.4591	1.394	1.318	1.2214	1

Excell

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1045.46	3	348.5	6.03	0.004	3.098
Within Groups	1156.5	20	57.825			
Total	2201.958	23				

Minitab

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Factor	3	1045	348.49	6.03	0.004
Error	20	1157	57.83		
Total	23	2202			

Least significant difference

$$
\mathrm{LSD}_{0.05}=\sqrt{\frac{2(M S)}{n}}=\sqrt{\frac{2(57.83)}{6}}=4.39
$$

$$
C . V=\sqrt{\frac{M S}{X}} \cdot 100 \%=\frac{57.83}{77.8} \cdot 100 \%=9.77 \%
$$

TR	Mean	relation
C	69.2	$C-A=6.4, C-B=9.7, C-D=18.3$
A	75.6	$A-B=1.2, A-D=11.8, C-A=6.4$
B	78.8	$B-D=8.7, B-C=9.7, B-A=1.2$
D	87.5	$D-C=18.3, D-A=11.8, B-D=8.7$

No. of comparisons for given group size

$$
n_{\text {comparisons }}=\frac{n_{\text {grps }} \times\left(n_{\text {grps }}-1\right)}{2} \quad 6=\frac{4 \times 3}{2}
$$

Least significant difference

$$
\mathrm{LSD}_{0.05}=\sqrt{\frac{2(M S)}{n}}=\sqrt{\frac{2(57.83)}{6}}=9.16
$$

$$
C . V=\sqrt{\frac{M S}{X}} \cdot 100 \%=\frac{57.83}{77.8} \cdot 100 \%=9.77 \%
$$

TR	Mean	relation
C	69.2	$\mathrm{C}-\mathrm{A}=6.4, \mathrm{C}-\mathrm{B}=9.7, \mathrm{C}-\mathrm{D}=18.3$
A	75.6	$\mathrm{~A}-\mathrm{B}=1.2, \mathrm{~A}-\mathrm{D}=11.8, \mathrm{C}-\mathrm{A}=6.4$
B	78.8	$\mathrm{~B}-\mathrm{D}=8.7, \mathrm{~B}-\mathrm{C}=9.7, \mathrm{~B}-\mathrm{A}=1.2$
D	87.5	$\mathrm{D}-\mathrm{C}=18.3, \mathrm{D}-\mathrm{A}=11.8, \mathrm{~B}-\mathrm{D}=8.7$

Fisher Individual Tests for Differences of Means

Difference Difference of Levels of Means Difference	SE of	Adjusted 95 CI		T-Value	P-Value
TR B - TR A	3.17	4.39	$(-5.99,12.32)$	0.72	0.479
TR C - TR A	-6.50	4.39	$(-15.66,2.66)$	-1.48	0.154
TR D - TR A	11.83	4.39	$(2.68,20.99)$	2.70	0.014
TR C - TR B	-9.67	4.39	$(-18.82,-0.51)$	-2.20	0.040
TR D - TR B	8.67	4.39	$(-0.49,17.82)$	1.97	0.062
TR D - TR C	18.33	4.39	$(9.18,27.49)$	4.18	0.000

Simultaneous confidence level $=80.83 \%$

Example: Investigation of the effects of a diet and/or exercise program on body weight.
Test subjects split into 4 groups.

Group Code	Treatment	No. Subjects
C	No dieting, no exercise (control group)	5
D	Dieting, no exercise	5
E	Exercise, no dieting	5
DE	Dieting + exercise	5

Effect of diet/exercise on weight: Results

Group	Weight Loss (kg)					
						Avg.
Control (C)	3	4	-2	1	-2	0.34
Diet (D)	5	3	2	1	2.5	2.94
Exercise (E)	6	4	5	3	5	4.6
Diet+Exercise (DE)	8	7	6	6.5	8.5	7.2

Effect of diet/exercise on weight: Box Plot

Boxplot of Control (C), Diet (D), Exercise (E), Diet+Exercise (DE)

Interval Plot of Control (C), Diet (D), Exercise (E), Diet+Exercise (D $95 \% \mathrm{Cl}$ for the Mean

Individual standard deviations are used to calculate the intervals.

Effect of diet/exercise on weight loss?

4 Groups

Control, Diet, Exercise, Diet+Exercise
Dependent Variable
Weight loss
Independent Variable
Treatment: Control / Diet / Exercise / Exercise+Diet

Possible Comparisons (6)

Control vs. Diet
Control vs. Exercise
Control vs. Diet + Exercise
Diet vs. Exercise
Diet vs. Diet + Exercise
Exercise vs. Diet + Exercise

Do any of the treatments work?

Which is better?

No. of comparisons for given group size
$n_{\text {comparisons }}=\frac{n_{\text {grps }} \times\left(n_{\text {grps }}-1\right)}{2} \quad 6=\frac{4 \times 3}{2}$

Analysis of Variance

Source DF	Adj SS	Adj MS F-Value P-Value			
Factor	3	112.04	37.346	12.17	0.000
Error	16	49.10	3.069		
Total	19	161.14			

Tukey Simultaneous Tests for Differences of Means

	Difference of Means Difference		95\% CI	T-Value	P-Value
Difference of Levels	1.90	$1.11(-1.27,5.07)$	1.71	0.348	
Diet (D) - Control (C)	3.80	$1.11(0.63,6.97)$	3.43	0.016	
Exercise (E) - Control (C)	6.40	$1.11(3.23,9.57)$	5.78	0.000	
Diet+Exercis - Control (C)	1.90	$1.11(-1.27,5.07)$	1.71	0.348	
Exercise (E) - Diet (D)	4.50	$1.11(1.33,7.67)$	4.06	0.005	
Diet+Exercis - Diet (D)	2.60	$1.11(-0.57,5.77)$	2.35	0.129	
Diet+Exercis - Exercise (E)					
\quad Individual confidence level =98.87\%					

Fisher Individual Tests for Differences of Means

	Difference	SE of	Adjusted		
Difference of Levels	of Means Difference	$95 \% ~ C I$	T-Value	P-Value	
Diet (D) - Control (C)	1.90	$1.11(-0.45,4.25)$	1.71	0.106	
Exercise (E) - Control (C)	3.80	1.11	$(1.45,6.15)$	3.43	0.003
Diet+Exercis - Control (C)	6.40	$1.11(4.05,8.75)$	5.78	0.000	
Exercise (E) - Diet (D)	1.90	$1.11(-0.45,4.25)$	1.71	0.106	
Diet+Exercis - Diet (D)	4.50	$1.11(2.15,6.85)$	4.06	0.001	
Diet+Exercis - Exercise (E)	2.60	$1.11(0.25,4.95)$	2.35	0.032	
\quad Simultaneous confidence level = 81.11\%					

If an interval does not contain zero, the corresponding means are significantly different

$$
\mathrm{LSD}_{0.05}=\sqrt{\frac{2(M S)}{n}}
$$

$$
=? ?
$$

Significant differences between groups indicated by asterisks and lines joining bars
 * $P<0.05$
 ** $\mathrm{P}<0.01$

Individual standard deviations are used to calculate the intervals.

